3.5.16 \(\int \frac {(e \sec (c+d x))^{5/2}}{\sqrt {a+i a \tan (c+d x)}} \, dx\) [416]

3.5.16.1 Optimal result
3.5.16.2 Mathematica [A] (verified)
3.5.16.3 Rubi [A] (verified)
3.5.16.4 Maple [B] (warning: unable to verify)
3.5.16.5 Fricas [A] (verification not implemented)
3.5.16.6 Sympy [F(-1)]
3.5.16.7 Maxima [B] (verification not implemented)
3.5.16.8 Giac [F]
3.5.16.9 Mupad [F(-1)]

3.5.16.1 Optimal result

Integrand size = 30, antiderivative size = 369 \[ \int \frac {(e \sec (c+d x))^{5/2}}{\sqrt {a+i a \tan (c+d x)}} \, dx=\frac {i e^{5/2} \arctan \left (1-\frac {\sqrt {2} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{\sqrt {2} \sqrt {a} d}-\frac {i e^{5/2} \arctan \left (1+\frac {\sqrt {2} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{\sqrt {2} \sqrt {a} d}-\frac {i e^{5/2} \log \left (a-\frac {\sqrt {2} \sqrt {a} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}+\cos (c+d x) (a+i a \tan (c+d x))\right )}{2 \sqrt {2} \sqrt {a} d}+\frac {i e^{5/2} \log \left (a+\frac {\sqrt {2} \sqrt {a} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}+\cos (c+d x) (a+i a \tan (c+d x))\right )}{2 \sqrt {2} \sqrt {a} d}-\frac {i e^2 \sqrt {e \sec (c+d x)} \sqrt {a+i a \tan (c+d x)}}{a d} \]

output
1/2*I*e^(5/2)*arctan(1-2^(1/2)*e^(1/2)*(a+I*a*tan(d*x+c))^(1/2)/a^(1/2)/(e 
*sec(d*x+c))^(1/2))/d*2^(1/2)/a^(1/2)-1/2*I*e^(5/2)*arctan(1+2^(1/2)*e^(1/ 
2)*(a+I*a*tan(d*x+c))^(1/2)/a^(1/2)/(e*sec(d*x+c))^(1/2))/d*2^(1/2)/a^(1/2 
)-1/4*I*e^(5/2)*ln(a-2^(1/2)*a^(1/2)*e^(1/2)*(a+I*a*tan(d*x+c))^(1/2)/(e*s 
ec(d*x+c))^(1/2)+cos(d*x+c)*(a+I*a*tan(d*x+c)))/d*2^(1/2)/a^(1/2)+1/4*I*e^ 
(5/2)*ln(a+2^(1/2)*a^(1/2)*e^(1/2)*(a+I*a*tan(d*x+c))^(1/2)/(e*sec(d*x+c)) 
^(1/2)+cos(d*x+c)*(a+I*a*tan(d*x+c)))/d*2^(1/2)/a^(1/2)-I*e^2*(e*sec(d*x+c 
))^(1/2)*(a+I*a*tan(d*x+c))^(1/2)/a/d
 
3.5.16.2 Mathematica [A] (verified)

Time = 3.78 (sec) , antiderivative size = 350, normalized size of antiderivative = 0.95 \[ \int \frac {(e \sec (c+d x))^{5/2}}{\sqrt {a+i a \tan (c+d x)}} \, dx=\frac {e^3 \left (\sec (c+d x) \sqrt {1+\cos (2 c)+i \sin (2 c)} \sqrt {i-\tan \left (\frac {d x}{2}\right )}-i \text {arctanh}\left (\frac {\sqrt {1-i \cos (c)+\sin (c)} \sqrt {i-\tan \left (\frac {d x}{2}\right )}}{\sqrt {-1-i \cos (c)-\sin (c)} \sqrt {i+\tan \left (\frac {d x}{2}\right )}}\right ) \sqrt {-1-i \cos (c)-\sin (c)} \sqrt {1+i \cos (c)-\sin (c)} \sqrt {i+\tan \left (\frac {d x}{2}\right )}+i \text {arctanh}\left (\frac {\sqrt {1+i \cos (c)-\sin (c)} \sqrt {i-\tan \left (\frac {d x}{2}\right )}}{\sqrt {-1+i \cos (c)+\sin (c)} \sqrt {i+\tan \left (\frac {d x}{2}\right )}}\right ) \sqrt {1-i \cos (c)+\sin (c)} \sqrt {-1+i \cos (c)+\sin (c)} \sqrt {i+\tan \left (\frac {d x}{2}\right )}\right ) (-i+\tan (c+d x))}{d \sqrt {e \sec (c+d x)} \sqrt {1+\cos (2 c)+i \sin (2 c)} \sqrt {i-\tan \left (\frac {d x}{2}\right )} \sqrt {a+i a \tan (c+d x)}} \]

input
Integrate[(e*Sec[c + d*x])^(5/2)/Sqrt[a + I*a*Tan[c + d*x]],x]
 
output
(e^3*(Sec[c + d*x]*Sqrt[1 + Cos[2*c] + I*Sin[2*c]]*Sqrt[I - Tan[(d*x)/2]] 
- I*ArcTanh[(Sqrt[1 - I*Cos[c] + Sin[c]]*Sqrt[I - Tan[(d*x)/2]])/(Sqrt[-1 
- I*Cos[c] - Sin[c]]*Sqrt[I + Tan[(d*x)/2]])]*Sqrt[-1 - I*Cos[c] - Sin[c]] 
*Sqrt[1 + I*Cos[c] - Sin[c]]*Sqrt[I + Tan[(d*x)/2]] + I*ArcTanh[(Sqrt[1 + 
I*Cos[c] - Sin[c]]*Sqrt[I - Tan[(d*x)/2]])/(Sqrt[-1 + I*Cos[c] + Sin[c]]*S 
qrt[I + Tan[(d*x)/2]])]*Sqrt[1 - I*Cos[c] + Sin[c]]*Sqrt[-1 + I*Cos[c] + S 
in[c]]*Sqrt[I + Tan[(d*x)/2]])*(-I + Tan[c + d*x]))/(d*Sqrt[e*Sec[c + d*x] 
]*Sqrt[1 + Cos[2*c] + I*Sin[2*c]]*Sqrt[I - Tan[(d*x)/2]]*Sqrt[a + I*a*Tan[ 
c + d*x]])
 
3.5.16.3 Rubi [A] (verified)

Time = 0.65 (sec) , antiderivative size = 375, normalized size of antiderivative = 1.02, number of steps used = 13, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.400, Rules used = {3042, 3982, 3042, 3976, 826, 1476, 1082, 217, 1479, 25, 27, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(e \sec (c+d x))^{5/2}}{\sqrt {a+i a \tan (c+d x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {(e \sec (c+d x))^{5/2}}{\sqrt {a+i a \tan (c+d x)}}dx\)

\(\Big \downarrow \) 3982

\(\displaystyle \frac {e^2 \int \sqrt {e \sec (c+d x)} \sqrt {i \tan (c+d x) a+a}dx}{2 a}-\frac {i e^2 \sqrt {a+i a \tan (c+d x)} \sqrt {e \sec (c+d x)}}{a d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {e^2 \int \sqrt {e \sec (c+d x)} \sqrt {i \tan (c+d x) a+a}dx}{2 a}-\frac {i e^2 \sqrt {a+i a \tan (c+d x)} \sqrt {e \sec (c+d x)}}{a d}\)

\(\Big \downarrow \) 3976

\(\displaystyle -\frac {2 i e^4 \int \frac {\cos (c+d x) (i \tan (c+d x) a+a)}{e \left (a^2+\cos ^2(c+d x) (i \tan (c+d x) a+a)^2\right )}d\frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {e \sec (c+d x)}}}{d}-\frac {i e^2 \sqrt {a+i a \tan (c+d x)} \sqrt {e \sec (c+d x)}}{a d}\)

\(\Big \downarrow \) 826

\(\displaystyle -\frac {2 i e^4 \left (\frac {\int \frac {a+\cos (c+d x) (i \tan (c+d x) a+a)}{a^2+\cos ^2(c+d x) (i \tan (c+d x) a+a)^2}d\frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {e \sec (c+d x)}}}{2 e}-\frac {\int \frac {a-\cos (c+d x) (i \tan (c+d x) a+a)}{a^2+\cos ^2(c+d x) (i \tan (c+d x) a+a)^2}d\frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {e \sec (c+d x)}}}{2 e}\right )}{d}-\frac {i e^2 \sqrt {a+i a \tan (c+d x)} \sqrt {e \sec (c+d x)}}{a d}\)

\(\Big \downarrow \) 1476

\(\displaystyle -\frac {2 i e^4 \left (\frac {\frac {\int \frac {1}{\frac {a}{e}-\frac {\sqrt {2} \sqrt {i \tan (c+d x) a+a} \sqrt {a}}{\sqrt {e} \sqrt {e \sec (c+d x)}}+\frac {\cos (c+d x) (i \tan (c+d x) a+a)}{e}}d\frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {e \sec (c+d x)}}}{2 e}+\frac {\int \frac {1}{\frac {a}{e}+\frac {\sqrt {2} \sqrt {i \tan (c+d x) a+a} \sqrt {a}}{\sqrt {e} \sqrt {e \sec (c+d x)}}+\frac {\cos (c+d x) (i \tan (c+d x) a+a)}{e}}d\frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {e \sec (c+d x)}}}{2 e}}{2 e}-\frac {\int \frac {a-\cos (c+d x) (i \tan (c+d x) a+a)}{a^2+\cos ^2(c+d x) (i \tan (c+d x) a+a)^2}d\frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {e \sec (c+d x)}}}{2 e}\right )}{d}-\frac {i e^2 \sqrt {a+i a \tan (c+d x)} \sqrt {e \sec (c+d x)}}{a d}\)

\(\Big \downarrow \) 1082

\(\displaystyle -\frac {2 i e^4 \left (\frac {\frac {\int \frac {1}{-\frac {\cos (c+d x) (i \tan (c+d x) a+a)}{e}-1}d\left (1-\frac {\sqrt {2} \sqrt {e} \sqrt {i \tan (c+d x) a+a}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{\sqrt {2} \sqrt {a} \sqrt {e}}-\frac {\int \frac {1}{-\frac {\cos (c+d x) (i \tan (c+d x) a+a)}{e}-1}d\left (\frac {\sqrt {2} \sqrt {e} \sqrt {i \tan (c+d x) a+a}}{\sqrt {a} \sqrt {e \sec (c+d x)}}+1\right )}{\sqrt {2} \sqrt {a} \sqrt {e}}}{2 e}-\frac {\int \frac {a-\cos (c+d x) (i \tan (c+d x) a+a)}{a^2+\cos ^2(c+d x) (i \tan (c+d x) a+a)^2}d\frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {e \sec (c+d x)}}}{2 e}\right )}{d}-\frac {i e^2 \sqrt {a+i a \tan (c+d x)} \sqrt {e \sec (c+d x)}}{a d}\)

\(\Big \downarrow \) 217

\(\displaystyle -\frac {2 i e^4 \left (\frac {\frac {\arctan \left (1+\frac {\sqrt {2} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{\sqrt {2} \sqrt {a} \sqrt {e}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{\sqrt {2} \sqrt {a} \sqrt {e}}}{2 e}-\frac {\int \frac {a-\cos (c+d x) (i \tan (c+d x) a+a)}{a^2+\cos ^2(c+d x) (i \tan (c+d x) a+a)^2}d\frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {e \sec (c+d x)}}}{2 e}\right )}{d}-\frac {i e^2 \sqrt {a+i a \tan (c+d x)} \sqrt {e \sec (c+d x)}}{a d}\)

\(\Big \downarrow \) 1479

\(\displaystyle -\frac {2 i e^4 \left (\frac {\frac {\arctan \left (1+\frac {\sqrt {2} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{\sqrt {2} \sqrt {a} \sqrt {e}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{\sqrt {2} \sqrt {a} \sqrt {e}}}{2 e}-\frac {-\frac {\int -\frac {\sqrt {2} \sqrt {a}-\frac {2 \sqrt {e} \sqrt {i \tan (c+d x) a+a}}{\sqrt {e \sec (c+d x)}}}{\sqrt {e} \left (\frac {a}{e}-\frac {\sqrt {2} \sqrt {i \tan (c+d x) a+a} \sqrt {a}}{\sqrt {e} \sqrt {e \sec (c+d x)}}+\frac {\cos (c+d x) (i \tan (c+d x) a+a)}{e}\right )}d\frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {e \sec (c+d x)}}}{2 \sqrt {2} \sqrt {a} \sqrt {e}}-\frac {\int -\frac {\sqrt {2} \left (\sqrt {a}+\frac {\sqrt {2} \sqrt {e} \sqrt {i \tan (c+d x) a+a}}{\sqrt {e \sec (c+d x)}}\right )}{\sqrt {e} \left (\frac {a}{e}+\frac {\sqrt {2} \sqrt {i \tan (c+d x) a+a} \sqrt {a}}{\sqrt {e} \sqrt {e \sec (c+d x)}}+\frac {\cos (c+d x) (i \tan (c+d x) a+a)}{e}\right )}d\frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {e \sec (c+d x)}}}{2 \sqrt {2} \sqrt {a} \sqrt {e}}}{2 e}\right )}{d}-\frac {i e^2 \sqrt {a+i a \tan (c+d x)} \sqrt {e \sec (c+d x)}}{a d}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {2 i e^4 \left (\frac {\frac {\arctan \left (1+\frac {\sqrt {2} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{\sqrt {2} \sqrt {a} \sqrt {e}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{\sqrt {2} \sqrt {a} \sqrt {e}}}{2 e}-\frac {\frac {\int \frac {\sqrt {2} \sqrt {a}-\frac {2 \sqrt {e} \sqrt {i \tan (c+d x) a+a}}{\sqrt {e \sec (c+d x)}}}{\sqrt {e} \left (\frac {a}{e}-\frac {\sqrt {2} \sqrt {i \tan (c+d x) a+a} \sqrt {a}}{\sqrt {e} \sqrt {e \sec (c+d x)}}+\frac {\cos (c+d x) (i \tan (c+d x) a+a)}{e}\right )}d\frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {e \sec (c+d x)}}}{2 \sqrt {2} \sqrt {a} \sqrt {e}}+\frac {\int \frac {\sqrt {2} \left (\sqrt {a}+\frac {\sqrt {2} \sqrt {e} \sqrt {i \tan (c+d x) a+a}}{\sqrt {e \sec (c+d x)}}\right )}{\sqrt {e} \left (\frac {a}{e}+\frac {\sqrt {2} \sqrt {i \tan (c+d x) a+a} \sqrt {a}}{\sqrt {e} \sqrt {e \sec (c+d x)}}+\frac {\cos (c+d x) (i \tan (c+d x) a+a)}{e}\right )}d\frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {e \sec (c+d x)}}}{2 \sqrt {2} \sqrt {a} \sqrt {e}}}{2 e}\right )}{d}-\frac {i e^2 \sqrt {a+i a \tan (c+d x)} \sqrt {e \sec (c+d x)}}{a d}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {2 i e^4 \left (\frac {\frac {\arctan \left (1+\frac {\sqrt {2} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{\sqrt {2} \sqrt {a} \sqrt {e}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{\sqrt {2} \sqrt {a} \sqrt {e}}}{2 e}-\frac {\frac {\int \frac {\sqrt {2} \sqrt {a}-\frac {2 \sqrt {e} \sqrt {i \tan (c+d x) a+a}}{\sqrt {e \sec (c+d x)}}}{\frac {a}{e}-\frac {\sqrt {2} \sqrt {i \tan (c+d x) a+a} \sqrt {a}}{\sqrt {e} \sqrt {e \sec (c+d x)}}+\frac {\cos (c+d x) (i \tan (c+d x) a+a)}{e}}d\frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {e \sec (c+d x)}}}{2 \sqrt {2} \sqrt {a} e}+\frac {\int \frac {\sqrt {a}+\frac {\sqrt {2} \sqrt {e} \sqrt {i \tan (c+d x) a+a}}{\sqrt {e \sec (c+d x)}}}{\frac {a}{e}+\frac {\sqrt {2} \sqrt {i \tan (c+d x) a+a} \sqrt {a}}{\sqrt {e} \sqrt {e \sec (c+d x)}}+\frac {\cos (c+d x) (i \tan (c+d x) a+a)}{e}}d\frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {e \sec (c+d x)}}}{2 \sqrt {a} e}}{2 e}\right )}{d}-\frac {i e^2 \sqrt {a+i a \tan (c+d x)} \sqrt {e \sec (c+d x)}}{a d}\)

\(\Big \downarrow \) 1103

\(\displaystyle -\frac {2 i e^4 \left (\frac {\frac {\arctan \left (1+\frac {\sqrt {2} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{\sqrt {2} \sqrt {a} \sqrt {e}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{\sqrt {2} \sqrt {a} \sqrt {e}}}{2 e}-\frac {\frac {\log \left (\frac {\sqrt {2} \sqrt {a} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}+\cos (c+d x) (a+i a \tan (c+d x))+a\right )}{2 \sqrt {2} \sqrt {a} \sqrt {e}}-\frac {\log \left (-\frac {\sqrt {2} \sqrt {a} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}+\cos (c+d x) (a+i a \tan (c+d x))+a\right )}{2 \sqrt {2} \sqrt {a} \sqrt {e}}}{2 e}\right )}{d}-\frac {i e^2 \sqrt {a+i a \tan (c+d x)} \sqrt {e \sec (c+d x)}}{a d}\)

input
Int[(e*Sec[c + d*x])^(5/2)/Sqrt[a + I*a*Tan[c + d*x]],x]
 
output
((-2*I)*e^4*((-(ArcTan[1 - (Sqrt[2]*Sqrt[e]*Sqrt[a + I*a*Tan[c + d*x]])/(S 
qrt[a]*Sqrt[e*Sec[c + d*x]])]/(Sqrt[2]*Sqrt[a]*Sqrt[e])) + ArcTan[1 + (Sqr 
t[2]*Sqrt[e]*Sqrt[a + I*a*Tan[c + d*x]])/(Sqrt[a]*Sqrt[e*Sec[c + d*x]])]/( 
Sqrt[2]*Sqrt[a]*Sqrt[e]))/(2*e) - (-1/2*Log[a - (Sqrt[2]*Sqrt[a]*Sqrt[e]*S 
qrt[a + I*a*Tan[c + d*x]])/Sqrt[e*Sec[c + d*x]] + Cos[c + d*x]*(a + I*a*Ta 
n[c + d*x])]/(Sqrt[2]*Sqrt[a]*Sqrt[e]) + Log[a + (Sqrt[2]*Sqrt[a]*Sqrt[e]* 
Sqrt[a + I*a*Tan[c + d*x]])/Sqrt[e*Sec[c + d*x]] + Cos[c + d*x]*(a + I*a*T 
an[c + d*x])]/(2*Sqrt[2]*Sqrt[a]*Sqrt[e]))/(2*e)))/d - (I*e^2*Sqrt[e*Sec[c 
 + d*x]]*Sqrt[a + I*a*Tan[c + d*x]])/(a*d)
 

3.5.16.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 826
Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[a/b, 
2]], s = Denominator[Rt[a/b, 2]]}, Simp[1/(2*s)   Int[(r + s*x^2)/(a + b*x^ 
4), x], x] - Simp[1/(2*s)   Int[(r - s*x^2)/(a + b*x^4), x], x]] /; FreeQ[{ 
a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] 
 && AtomQ[SplitProduct[SumBaseQ, b]]))
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1476
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
2*(d/e), 2]}, Simp[e/(2*c)   Int[1/Simp[d/e + q*x + x^2, x], x], x] + Simp[ 
e/(2*c)   Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e}, x] 
 && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]
 

rule 1479
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
-2*(d/e), 2]}, Simp[e/(2*c*q)   Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], 
 x] + Simp[e/(2*c*q)   Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /; F 
reeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3976
Int[Sqrt[(d_.)*sec[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.) 
*(x_)]], x_Symbol] :> Simp[-4*b*(d^2/f)   Subst[Int[x^2/(a^2 + d^2*x^4), x] 
, x, Sqrt[a + b*Tan[e + f*x]]/Sqrt[d*Sec[e + f*x]]], x] /; FreeQ[{a, b, d, 
e, f}, x] && EqQ[a^2 + b^2, 0]
 

rule 3982
Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*( 
x_)])^(n_), x_Symbol] :> Simp[d^2*(d*Sec[e + f*x])^(m - 2)*((a + b*Tan[e + 
f*x])^(n + 1)/(b*f*(m + n - 1))), x] + Simp[d^2*((m - 2)/(a*(m + n - 1))) 
 Int[(d*Sec[e + f*x])^(m - 2)*(a + b*Tan[e + f*x])^(n + 1), x], x] /; FreeQ 
[{a, b, d, e, f}, x] && EqQ[a^2 + b^2, 0] && LtQ[n, 0] && GtQ[m, 1] &&  !IL 
tQ[m + n, 0] && NeQ[m + n - 1, 0] && IntegersQ[2*m, 2*n]
 
3.5.16.4 Maple [B] (warning: unable to verify)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 764 vs. \(2 (285 ) = 570\).

Time = 15.95 (sec) , antiderivative size = 765, normalized size of antiderivative = 2.07

method result size
default \(\text {Expression too large to display}\) \(765\)

input
int((e*sec(d*x+c))^(5/2)/(a+I*a*tan(d*x+c))^(1/2),x,method=_RETURNVERBOSE)
 
output
-1/4/d*(-e*(csc(d*x+c)^2*(1-cos(d*x+c))^2+1)/(csc(d*x+c)^2*(1-cos(d*x+c))^ 
2-1))^(5/2)*(csc(d*x+c)^2*(1-cos(d*x+c))^2-1)*(-csc(d*x+c)+cot(d*x+c)+I)*( 
I*csc(d*x+c)^2*arctanh(1/2*(-cot(d*x+c)+csc(d*x+c)+1)*2^(1/2)/(csc(d*x+c)^ 
2*(1-cos(d*x+c))^2+1)^(1/2))*2^(1/2)*(1-cos(d*x+c))^2+I*csc(d*x+c)^2*arcta 
nh(1/2*(-cot(d*x+c)+csc(d*x+c)-1)*2^(1/2)/(csc(d*x+c)^2*(1-cos(d*x+c))^2+1 
)^(1/2))*2^(1/2)*(1-cos(d*x+c))^2-csc(d*x+c)^2*arctanh(1/2*(-cot(d*x+c)+cs 
c(d*x+c)+1)*2^(1/2)/(csc(d*x+c)^2*(1-cos(d*x+c))^2+1)^(1/2))*2^(1/2)*(1-co 
s(d*x+c))^2+csc(d*x+c)^2*arctanh(1/2*(-cot(d*x+c)+csc(d*x+c)-1)*2^(1/2)/(c 
sc(d*x+c)^2*(1-cos(d*x+c))^2+1)^(1/2))*2^(1/2)*(1-cos(d*x+c))^2-I*arctanh( 
1/2*(-cot(d*x+c)+csc(d*x+c)+1)*2^(1/2)/(csc(d*x+c)^2*(1-cos(d*x+c))^2+1)^( 
1/2))*2^(1/2)-I*arctanh(1/2*(-cot(d*x+c)+csc(d*x+c)-1)*2^(1/2)/(csc(d*x+c) 
^2*(1-cos(d*x+c))^2+1)^(1/2))*2^(1/2)-4*I*(csc(d*x+c)^2*(1-cos(d*x+c))^2+1 
)^(1/2)*(csc(d*x+c)-cot(d*x+c))+2^(1/2)*arctanh(1/2*(-cot(d*x+c)+csc(d*x+c 
)+1)*2^(1/2)/(csc(d*x+c)^2*(1-cos(d*x+c))^2+1)^(1/2))-2^(1/2)*arctanh(1/2* 
(-cot(d*x+c)+csc(d*x+c)-1)*2^(1/2)/(csc(d*x+c)^2*(1-cos(d*x+c))^2+1)^(1/2) 
)-4*(csc(d*x+c)^2*(1-cos(d*x+c))^2+1)^(1/2))/(-a*(2*I*(csc(d*x+c)-cot(d*x+ 
c))-csc(d*x+c)^2*(1-cos(d*x+c))^2+1)/(csc(d*x+c)^2*(1-cos(d*x+c))^2-1))^(1 
/2)/(csc(d*x+c)^2*(1-cos(d*x+c))^2+1)^(5/2)
 
3.5.16.5 Fricas [A] (verification not implemented)

Time = 0.27 (sec) , antiderivative size = 461, normalized size of antiderivative = 1.25 \[ \int \frac {(e \sec (c+d x))^{5/2}}{\sqrt {a+i a \tan (c+d x)}} \, dx=\frac {-4 i \, e^{2} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {e}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (\frac {3}{2} i \, d x + \frac {3}{2} i \, c\right )} + \sqrt {\frac {i \, e^{5}}{a d^{2}}} a d \log \left (\frac {2 \, {\left ({\left (e^{2} e^{\left (2 i \, d x + 2 i \, c\right )} + e^{2}\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {e}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (\frac {1}{2} i \, d x + \frac {1}{2} i \, c\right )} + \sqrt {\frac {i \, e^{5}}{a d^{2}}} a d\right )}}{e^{2}}\right ) - \sqrt {\frac {i \, e^{5}}{a d^{2}}} a d \log \left (\frac {2 \, {\left ({\left (e^{2} e^{\left (2 i \, d x + 2 i \, c\right )} + e^{2}\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {e}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (\frac {1}{2} i \, d x + \frac {1}{2} i \, c\right )} - \sqrt {\frac {i \, e^{5}}{a d^{2}}} a d\right )}}{e^{2}}\right ) - \sqrt {-\frac {i \, e^{5}}{a d^{2}}} a d \log \left (\frac {2 \, {\left ({\left (e^{2} e^{\left (2 i \, d x + 2 i \, c\right )} + e^{2}\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {e}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (\frac {1}{2} i \, d x + \frac {1}{2} i \, c\right )} + \sqrt {-\frac {i \, e^{5}}{a d^{2}}} a d\right )}}{e^{2}}\right ) + \sqrt {-\frac {i \, e^{5}}{a d^{2}}} a d \log \left (\frac {2 \, {\left ({\left (e^{2} e^{\left (2 i \, d x + 2 i \, c\right )} + e^{2}\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {e}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (\frac {1}{2} i \, d x + \frac {1}{2} i \, c\right )} - \sqrt {-\frac {i \, e^{5}}{a d^{2}}} a d\right )}}{e^{2}}\right )}{2 \, a d} \]

input
integrate((e*sec(d*x+c))^(5/2)/(a+I*a*tan(d*x+c))^(1/2),x, algorithm="fric 
as")
 
output
1/2*(-4*I*e^2*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt(e/(e^(2*I*d*x + 2*I*c 
) + 1))*e^(3/2*I*d*x + 3/2*I*c) + sqrt(I*e^5/(a*d^2))*a*d*log(2*((e^2*e^(2 
*I*d*x + 2*I*c) + e^2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt(e/(e^(2*I*d* 
x + 2*I*c) + 1))*e^(1/2*I*d*x + 1/2*I*c) + sqrt(I*e^5/(a*d^2))*a*d)/e^2) - 
 sqrt(I*e^5/(a*d^2))*a*d*log(2*((e^2*e^(2*I*d*x + 2*I*c) + e^2)*sqrt(a/(e^ 
(2*I*d*x + 2*I*c) + 1))*sqrt(e/(e^(2*I*d*x + 2*I*c) + 1))*e^(1/2*I*d*x + 1 
/2*I*c) - sqrt(I*e^5/(a*d^2))*a*d)/e^2) - sqrt(-I*e^5/(a*d^2))*a*d*log(2*( 
(e^2*e^(2*I*d*x + 2*I*c) + e^2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt(e/( 
e^(2*I*d*x + 2*I*c) + 1))*e^(1/2*I*d*x + 1/2*I*c) + sqrt(-I*e^5/(a*d^2))*a 
*d)/e^2) + sqrt(-I*e^5/(a*d^2))*a*d*log(2*((e^2*e^(2*I*d*x + 2*I*c) + e^2) 
*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt(e/(e^(2*I*d*x + 2*I*c) + 1))*e^(1/ 
2*I*d*x + 1/2*I*c) - sqrt(-I*e^5/(a*d^2))*a*d)/e^2))/(a*d)
 
3.5.16.6 Sympy [F(-1)]

Timed out. \[ \int \frac {(e \sec (c+d x))^{5/2}}{\sqrt {a+i a \tan (c+d x)}} \, dx=\text {Timed out} \]

input
integrate((e*sec(d*x+c))**(5/2)/(a+I*a*tan(d*x+c))**(1/2),x)
 
output
Timed out
 
3.5.16.7 Maxima [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 2258 vs. \(2 (273) = 546\).

Time = 0.78 (sec) , antiderivative size = 2258, normalized size of antiderivative = 6.12 \[ \int \frac {(e \sec (c+d x))^{5/2}}{\sqrt {a+i a \tan (c+d x)}} \, dx=\text {Too large to display} \]

input
integrate((e*sec(d*x+c))^(5/2)/(a+I*a*tan(d*x+c))^(1/2),x, algorithm="maxi 
ma")
 
output
-8*(16*e^2*cos(3/2*d*x + 3/2*c) + 16*I*e^2*sin(3/2*d*x + 3/2*c) + 2*(sqrt( 
2)*e^2*cos(4/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + I*sq 
rt(2)*e^2*sin(4/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + s 
qrt(2)*e^2)*arctan2(sqrt(2)*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2* 
d*x + 3/2*c))) + 1, sqrt(2)*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2* 
d*x + 3/2*c))) + 1) + 2*(sqrt(2)*e^2*cos(4/3*arctan2(sin(3/2*d*x + 3/2*c), 
 cos(3/2*d*x + 3/2*c))) + I*sqrt(2)*e^2*sin(4/3*arctan2(sin(3/2*d*x + 3/2* 
c), cos(3/2*d*x + 3/2*c))) + sqrt(2)*e^2)*arctan2(sqrt(2)*cos(1/3*arctan2( 
sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 1, -sqrt(2)*sin(1/3*arctan2 
(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 1) + 2*(sqrt(2)*e^2*cos(4/ 
3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + I*sqrt(2)*e^2*sin 
(4/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + sqrt(2)*e^2)*a 
rctan2(sqrt(2)*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)) 
) - 1, sqrt(2)*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)) 
) + 1) + 2*(sqrt(2)*e^2*cos(4/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x 
+ 3/2*c))) + I*sqrt(2)*e^2*sin(4/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d 
*x + 3/2*c))) + sqrt(2)*e^2)*arctan2(sqrt(2)*cos(1/3*arctan2(sin(3/2*d*x + 
 3/2*c), cos(3/2*d*x + 3/2*c))) - 1, -sqrt(2)*sin(1/3*arctan2(sin(3/2*d*x 
+ 3/2*c), cos(3/2*d*x + 3/2*c))) + 1) + 2*(-I*sqrt(2)*e^2*cos(4/3*arctan2( 
sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + sqrt(2)*e^2*sin(4/3*arct...
 
3.5.16.8 Giac [F]

\[ \int \frac {(e \sec (c+d x))^{5/2}}{\sqrt {a+i a \tan (c+d x)}} \, dx=\int { \frac {\left (e \sec \left (d x + c\right )\right )^{\frac {5}{2}}}{\sqrt {i \, a \tan \left (d x + c\right ) + a}} \,d x } \]

input
integrate((e*sec(d*x+c))^(5/2)/(a+I*a*tan(d*x+c))^(1/2),x, algorithm="giac 
")
 
output
integrate((e*sec(d*x + c))^(5/2)/sqrt(I*a*tan(d*x + c) + a), x)
 
3.5.16.9 Mupad [F(-1)]

Timed out. \[ \int \frac {(e \sec (c+d x))^{5/2}}{\sqrt {a+i a \tan (c+d x)}} \, dx=\int \frac {{\left (\frac {e}{\cos \left (c+d\,x\right )}\right )}^{5/2}}{\sqrt {a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}}} \,d x \]

input
int((e/cos(c + d*x))^(5/2)/(a + a*tan(c + d*x)*1i)^(1/2),x)
 
output
int((e/cos(c + d*x))^(5/2)/(a + a*tan(c + d*x)*1i)^(1/2), x)